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The Complex case

Definition

Let f : C — PN(C) be a non-constant analytic curve,
f= (fo, ..., fy) be a reduced representative of f.
Let :

1 (2)I] == max{|fo(2)], ... |fn(2)[}-

The Nevanlinna characteristic function of f is

1 27 5 .
Te(r) = 27T/0 log || (re'®)||d6.




Definition

The proximity function of a homogeneous polynomial @ of
degree d respect to the map f is defined by

e do
Q) "/o e Qe 27

The counting function is

N¢(r, Q) = /r ni(t, Q) _t ¢ 0, Q)dt + n¢(0, Q) log r,
0
where
ne(r, Q) :=#{z | |z| < r, Q o f(z) = 0}, counting multiplicity

The defect of  with respect to Q by

= liminf(1 — _Ne(r Q)
0<6/(Q) = Ir_mf(l (deg OV T+ (1) <1.




The Complex case

Question
1. What is the best upper bounded of

q
Z5f(Qi) <?
i=1

(This is a problem of the second main theorem)

2. If two nonconstant meromorphic functions which have the same
inverse images of elements or sets. Then, will they be equal?
(This is a problem of uniqueness)




The Complex case

Question 1: The problem of second main theorem

e ()n=1:
- For complex numbers: The Classical Second Main
Theorem of Nevanlinna: f is a meromorphic function, a; are

distinct points in C. Then

q

> (8r(ar) + 0¢(a) <2,

i=1
where

~imin Ne(r,a) — N¢(r, a)
9,((3) = lrﬂoof Tf(r)




The Complex case

- For small functions: f is a meromorphic function, « is called

small function with f iff T,(r) = o(T¢(r))

@ Steinmetz and Osgood proved: f is a meromorphic function,

aj, i =1,...,q are small functions with f, then

q

> o¢(ai) < 2.

i=1
@ Yamanoi (Acta Math 2004): f is a meromorphic function,
aj, i =1,...,q are small functions with f, then

q

> (e(e) + O¢(ai)) < 2.

i=1



The Complex case

o (M)n>2:

o Cartan, Mathematica, 1933: f : C — P" is a linearly
nondegenerate, Hi, ..., Hy are hyperplanes such that any
n+ 1 of them is linearly independence. Then

q

Z 5f(H,) <n+1.

i=1



The Complex case

e Shiffman, Indiana U. Math. J., 1979: D;,... D, are
hypersurfaces in general position with P", f : C™ — P" is a of

finite order and Imf ¢ D; for any i. Then

Definition

X is a n-dimensional projective variety. Dy, ..., Dg of X is said to
be in general position if

@ the codimension of ﬂj’zl Dj in X is g when g < n;
o forany {i,...,in} C{L,...,q}, N\_oDj; = () when g > n+1.




The Complex case

e Eremenko and Sodin, St. Petersburg Math. J., 1992:

f:C—P"and Imf ¢ D;. Then

q

> 6¢(D;) < 2n.

i=1
@ Ru, American J. Math., 2004: f : C — P" is a algebraically

nondegenerate. Then

q

> (D) <n+1.

i=1
Ru's results need condition f is alg. nondegenerate and it is

not clear if these results can implies Eremenko-Sodin's results

which only need nondegenerate in the hypersufaces.



The Complex case

Conjecture ( Griffiths' conjecture)

Assume Dy, ..., D, are hypersurfaces of degree d, in general
position with P” and f : C — P” is a algebraically nondegenerate
holomorphic map. Then

(Infact Griffiths asked if the above inequality holds for any map
which is algebraically nondegenerate in hypersuface of degree d.
There is a conterexample in the case of P2, Dy, Dy, D3 are the
conics, normal crossing, then there exits a map f which is not
degenerate of degree 2, but degenerate of degree 3 and

S22 0¢(D;) < (n+1)/d (=7/2) say that it is not true).



The Non-Archimedian case

Non-Archimedian case

@ K: an algebraically closed field of arbitrary characteristic,

complete with respect to a non-Archimedean absolute value

@ Let his an entire function on K, then for each real number

r>0,

h(z) = i amz™,
j=0

we define

|h|, - = sup|aj|F = sup{|h(2)| : z € K with |z| < r}
J

= sup{|h(z)| : z € K with |z| = r}.



The Non-Archimedian case

o Let f : K — P"(K) be a non-constant analytic curve in
projective space with 7 = (fy, ..., f,) be a reduced

representative.

[[f]]r == max{|folr, ..., [fal+ },

Tr(r) := log [fll,,

+ _lIfIlY

mf(r, Q) = |Og W



The Non-Archimedian case

n=1 f is a Non-Archimedian meromorphic function, and
aieK,i=1,...,q. Then

q

(q-1Tr() < S Ne(r.a) + 01), (%)

i=1

(g—2)T¢(r Z (r,a;)) —logr+ O(1), (*)

and hence

> oea) <1,

i=1

Question: What is the best bound in (*) when we consider a; to

be small functions?



The Non-Archimedian case

Our first result is as follows.

Theorem

Let f be a nonconstant meromorphic function on K. Let
ai,...,aq (q > 5) be q distinct small functions with respect to f.
We have

q
T(r,f) SZN +5(r f).




The Non-Archimedian case

Denote
E(a,k,f)={ze€ K: f(z)—a= 0 with multiplicities at most k.}

A zero of f — oo means a pole of f.
Denote E(a, o0, f) = E(a, f).

We say that f and g share a function a ignoring multiplicities if

E(a,f) = E(a,g).



The Non-Archimedian case

Theorem

Let f and g be two nonconstant meromorphic functions on K. Let
ai,...,aq (g >5) be q distinct small functions with respect to f
and g. Let ky,..., kg be q positive integers or +o00 with

Zq: 2qq 4)
< K+l 5(gtd)

E(aj, ki, f) = E(aj, kj,g) (=1,...,9),
then f =g




The Non-Archimedian case

In the case k; = --- = kg = k, we can get the result with slightly

smaller multiples as follows.

Theorem

Let f and g be two nonconstant meromorphic functions on K. Let

ai,...,aq (g >5) be q distinct small functions with respect to f

and g. Let k be a positive integer or +0o with k > 25?1; If

(ajjkf) (aj’kg) G=1,...,9),

then f = g

Corollary

Let f and g be two nonconstant meromorphic functions on K. Let
ai,...,as beb distinct small functions with respect to f and g. If
f and g share a; ignoring multiplicities (j = 1,...,5,) then f = g




The Non-Archimedian case

Sketch of proof We first consider the following lemma.

Lemma

Let f be a nonconstant meromorphic function on K. Let ay, ..., as
be distinct small functions with respect to f. We have

5
T(r,f) SZN +S(rf)




The Non-Archimedian case

- By the Lemma, for every subset {i1,...,i5} of {1,...,q} such
that 1 < i3 <--- < i5 < g, we have
5
(r,f) < ZN ———) + S(r, f). (1)
- The number of such inequalities is Cg. Taking summing up over

all subsets {i,...,is} of {1,...,q}:

— 1 — 1
{i,..,i5 }C{1,...,q}
1<ih<-<is<q
_ 1 _ 1 — 1
FN(r g ) N ) N a;5)> +S(r,f




The Non-Archimedian case

Hence,

q
— 1
20T (r, f) < Cq 4 § N(r, — )+ S(r,f).
=1

It follows that

2q i 1
5 T(rf) ggN f_al)—l—S(r f).



The Non-Archimedian case

e Khoai and Tu, Internat. J. Math, 1995: H;,..., H, are
hyperplanes in general position, f : K — P"(K) is non linear
degenerate. Then

q

> 6:(G)<n+1.

i=1
@ Ru, Proc. A.M.S,, 2001: Gy, ..., G4 are hypersurfaces of
P"(K) in general position, f : K — P"(K) and Imf ¢ G; for
any i. Then
q
Eéf(G,’) <n.
i=1



The Non-Archimedian case

X be a projective variety of dimension n > 1. Let Gy, .., G4 be
hypersurfaces in general position with X. Let f : K — X be a
non-constant analytic map and Imf ¢ G; for any i. Then




The Non-Archimedian case

Corollary

With the assumptions and notation as in the theorem, there is at
most n hypersurfaces G; such that 6¢(Gj) > 0.

Corollary

Let X be a projective variety of dimension n and Gy, --- , Gg are
hypersurfaces in general position. If ¢ > n+ 1 then

f:K— X\ {U,G} is constant.




Hyperbolic complements
®0

The Complex case

Definition
A manifold X over algebraically closed, and complete field F is

said to be hyperbolic (in the sense of Brody) if every analytic map
from F to X is constant.

v

Conjecture (Kobayashi - Zaidenberg Conjecture)

In the complex field, the complements of “generic" hypersurfaces
in P" with degree at least 2n + 1 are hyperbolic.




Hyperbolic complements
oe

Previous Work

e Green, Proc. A. M. S., 1977:

P"(C) \ {2n + 1 hyperplanes in general position} is
C-hyperbolic.

e Eremenko-Sodin, St. Petersburg M. J., 1992; and Ru, J.
Reine Angew. Math., 1993]: P"(C)\ {2n+1
hypersurfaces in general position} is C—hyperbolic.

e Dethloff, Schmacher, and Wong, Amer. J. Math., 1995;
Duke Math. J.,1995: For C; is generic curves,

P2(C) \ U%_, G is C—hyperbolic and P2(C) \ U3, C; is

' _hunerhalic fFAdec (- > 92 FfAr i — 1 2 2



Hyperbolic complements
©00000000

Non-Archimedian cases

e Ru, Proc. A.M.S., 2001:
P"(K) \ { n+ 1 hypersurfaces in general position} is
K-hyperbolic.

e Proc. A. M. S. 135 (2007):
X\ {dim X + 1 hypersurfaces in general position} is

K-hyperbolic.

Let Dy,....Dq, g < n, be g distinct generic hypersurfaces in P"(K).
If -7, deg D; > 2n, then P" \ U, D; is K-hyperbolic.




Hyperbolic complements
0®0000000

Theorem (Wang, Wong and A., J. Number Theory 128 (2008))

Let X be an n-dimensional nonsingular projective variety. Let
D; ={P; =0}, 1 <i < q, be hypersufaces in general position. Let
f:K— X\UL,D;. Then

codim(Im)f > min{n+1,q} — 1.

In particularly, if g > 2 then f is algebraically degenerate, and if
g > n+1 then X \ UL, D; is K-hyperbolic.

The following example shows that the theorem is sharp.

Let X =P" and g < n and

Dy = {Xa—g+1 =0},....Dg = {X, = 0}. Let fy,...,f,_q be
algebraically independent K-analytic functions. Then
f=(f,f, g 1,...., 1) : K— P"\ UL, D;, and
codim(Im)f = q — 1.



Hyperbolic complements
[eeX Yololelelele]

Let C be a irreducible projective curve. Then
C \ {two distinct points} is K-hyperbolic.




Hyperbolic complements
000®00000

Results in projective spaces

Definition

Nonsingular hypersurfaces Dy, ..., D, in P"(K) intersect
transversally if for every point x € N7_; D;, N7_,Op, , = {x},
where ©p, , is the tangent space to D; at x.




Hyperbolic complements
000080000

Let Dy, ..., D, be nonsingular hypersurfaces in P"(K) intersecting
transversally. Then P" \ U?_, D; is K-hyperbolic if deg D; > 2 for
each1l < i< n.

The assumption on the degree of the hypersurfaces is sharp.

Example

D1 = {Xo = O}, and D,' = {X02 aF a,-1X12 SFeoo gk a,-nX3 = O} with
a1+ -+ ap=0for2<i<nsuchthatevery n—1byn—1
submatrix of the matrix (a;;);j, 2 <i<n,1 <j <n, has rank

n— 1. Then these hypersurfaces intersect transversally. Clearly, the
analytic map f(z) = (1, z, z, ..., z) does not intersect any of the
hypersurfaces D;, 1 < i < n.




Hyperbolic complements
00000®000

The particular case when n = 2

Definition

Let D be a curve of degree d > 3 in P2. A nonsingular point x of
D is said to be a maximal inflexion point if there exits a line
intersecting D at x with multiplicity d.

Remark

The curve X9 — YZ9~1 = 0 has a maximal inflexion point

P =(0,0,1) if d > 3. Every smooth cubic has 9 maximal inflexion
points counting multiplicities. Since a maximal inflexion point is an
inflexion point, the coefficients of the defining equation of the
curve need to satisfy an algebraic equation (i.e. its Hessian form
cf. [?]). Therefore, it is not difficult to see that a generic curve of
degree d > 4 has no maximal inflexion points.




Hyperbolic complements
000000800

Theorem

Let Dy and D, be nonsingular projective curves in P?. Assume that
D1 and D, intersect transversally and deg D1 < deg D,. Then

P2\ {D; U Dy} is K-hyperbolic if and only if either

deg D1,deg Dy > 2 ordeg D; =1, deg D, > 3 and D; does not
intersect D, at any maximal inflexion point.




Hyperbolic complements
000000080

To prove the theorem, we first study some cases that

P2\ {D; U D,} fails to be K-hyperbolic.

Lemma

P2\ {D; U D,} is not K-hyperbolic if
(i) deg Dy =1 and deg D, < 2;
(i) deg D1 = deg D, =2 and D; and D, intersect tangentially;

(i) deg Dy =1, deg Dy > 3 and D; does intersect D, at a
maximal inflexion point of D;.




Hyperbolic complements
00000000e

The non-archimedean analogue of the Kobayashi-Zaidenberg

conjecture for the case of IP? omitting two generic curves follows

directly.

Let Dy and D, be distinct generic curves in P?. If
deg D; + deg D, > 4 then P?\ {D; U D,} is K-hyperbolic.
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