▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Non-Archimedean second main theorems and applications

Ta Thi Hoai An Institute of Mathematics, Hanoi, VietNam

May 20, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Let $f : \mathbb{C} \to \mathbb{P}^{N}(\mathbb{C})$ be a non-constant analytic curve, $\tilde{f} = (f_0, ..., f_N)$ be a reduced representative of f. Let

$$||\tilde{f}(z)|| := \max\{|f_0(z)|, ..., |f_N(z)|\}.$$

The Nevanlinna characteristic function of f is

$$T_f(r):=rac{1}{2\pi}\int_0^{2\pi}\log||\widetilde{f}(re^{i heta})||d heta.$$

Definition

The **proximity function** of a homogeneous polynomial Q of degree d respect to the map f is defined by

$$m_f(r,Q) := \int_0^{2\pi} \log^+ rac{|| ilde{f}(re^{i heta})||^d}{|Q(ilde{f})(re^{i heta})|} rac{d heta}{2\pi}.$$

The **counting function** is

$$N_f(r, Q) = \int_0^r \frac{n_f(t, Q) - n_f(0, Q)}{t} dt + n_f(0, Q) \log r_f$$

where

 $n_f(r, Q) := #\{z \mid |z| < r, Q \circ f(z) = 0\},$ counting multiplicity

The defect of f with respect to Q by

$$0\leq \delta_f(Q)=\liminf_{r o\infty}(1-rac{N_f(r,Q)}{(\deg Q)T_f(r)}\leq 1.$$

୦୯୯

Question

1. What is the best upper bounded of

$$\sum_{i=1}^q \delta_f(Q_i) \leq ?$$

(This is a problem of the second main theorem)

2. If two nonconstant meromorphic functions which have the same inverse images of elements or sets. Then, will they be equal? (This is a problem of uniqueness)

Question 1: The problem of second main theorem

- (I) n = 1:
 - For complex numbers: The Classical Second Main
 - Theorem of Nevanlinna: f is a meromorphic function, a_i are

distinct points in $\mathbb{C}.$ Then

$$\sum_{i=1}^{q} (\delta_f(\mathbf{a}_i) + \theta_f(\mathbf{a}_i)) \leq 2,$$

where

$$\theta_f(a) = \liminf_{r \to \infty} \frac{N_f(r, a) - \bar{N}_f(r, a)}{T_f(r)}.$$

- For small functions: f is a meromorphic function, α is called

small function with f iff $T_{\alpha}(r) = o(T_f(r))$

• Steinmetz and Osgood proved: f is a meromorphic function,

 $\alpha_i, i = 1, ..., q$ are small functions with f, then

$$\sum_{i=1}^q \delta_f(\alpha_i) \le 2.$$

• Yamanoi (Acta Math 2004): f is a meromorphic function,

 $\alpha_i, i = 1, ..., q$ are small functions with f, then

$$\sum_{i=1}^{q} (\delta_f(\alpha_i) + \theta_f(\alpha_i)) \leq 2.$$

- (II) n ≥ 2 :
 - Cartan, Mathematica, 1933: $f : \mathbb{C} \to \mathbb{P}^n$ is a linearly nondegenerate, H_1, \ldots, H_q are hyperplanes such that any n+1 of them is linearly independence. Then

$$\sum_{i=1}^q \delta_f(H_i) \le n+1.$$

• Shiffman, Indiana U. Math. J., 1979: D_1, \ldots, D_q are

hypersurfaces in general position with \mathbb{P}^n , $f : \mathbb{C}^m \to \mathbb{P}^n$ is a of

finite order and $\text{Im} f \not\subset D_i$ for any *i*. Then

$$\sum_{i=1}^q \delta_f(D_i) \leq 2n.$$

Definition

X is a *n*-dimensional projective variety. D_1, \ldots, D_q of X is said to be **in general position** if

- the codimension of $\bigcap_{i=1}^{q} D_i$ in X is q when $q \leq n$;
- for any $\{i_0,\ldots,i_n\} \subset \{1,\ldots,q\}, \cap_{j=0}^n D_{i_j} = \emptyset$ when $q \ge n+1$.

• Eremenko and Sodin, St. Petersburg Math. J., 1992:

 $f: \mathbb{C} \to \mathbb{P}^n$ and $\operatorname{Im} f \not\subset D_i$. Then

$$\sum_{i=1}^q \delta_f(D_i) \leq 2n.$$

• Ru, American J. Math., 2004: $f : \mathbb{C} \to \mathbb{P}^n$ is a algebraically

nondegenerate. Then

$$\sum_{i=1}^q \delta_f(D_i) \le n+1.$$

Ru's results need condition f is alg. nondegenerate and it is

not clear if these results can implies Eremenko-Sodin's results

which only need nondegenerate in the hypersurfaces.

Conjecture (Griffiths' conjecture)

Assume D_1, \ldots, D_q are hypersurfaces of degree d, in general position with \mathbb{P}^n and $f : \mathbb{C} \to \mathbb{P}^n$ is a algebraically nondegenerate holomorphic map. Then

$$\sum_{i=1}^q \delta_f(D_i) \leq (n+1)/d.$$

(Infact Griffiths asked if the above inequality holds for any map which is algebraically nondegenerate in hypersuface of degree d. There is a conterexample in the case of \mathbb{P}^2 , D_1 , D_2 , D_3 are the conics, normal crossing, then there exits a map f which is not degenerate of degree 2, but degenerate of degree 3 and $\sum_{i=1}^{3} \delta_f(D_i) \leq (n+1)/d \ (=7/2)$ say that it is not true).

Non-Archimedian case

- K: an algebraically closed field of arbitrary characteristic, complete with respect to a non-Archimedean absolute value
 ||.
- Let h is an entire function on \mathbf{K} , then for each real number $r \ge 0$,

$$h(z)=\sum_{j=0}^{\infty}a_{m}z^{m},$$

we define

$$|h|_{r} := \sup_{j} |a_{j}|r^{j} = \sup\{|h(z)| : z \in \mathbf{K} \text{ with } |z| \leq r\}$$
$$= \sup\{|h(z)| : z \in \mathbf{K} \text{ with } |z| = r\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Let f : K → Pⁿ(K) be a non-constant analytic curve in projective space with f̃ = (f₀, ..., f_n) be a reduced representative.

$$||f||_{r} := \max\{|f_{0}|_{r}, ..., |f_{n}|_{r}\},\$$
$$T_{f}(r) := \log ||f||_{r},\$$
$$m_{f}(r, Q) := \log^{+} \frac{||f||_{r}^{d}}{|Q \circ f|_{r}}.$$

The Non-Archimedian case

n = 1 f is a Non-Archimedian meromorphic function, and

 $a_i \in \mathbf{K}, i = 1, ..., q$. Then

$$(q-1)T_f(r) \leq \sum_{i=1}^q N_f(r,a_i) + O(1),$$
 (*)

$$(q-2)T_f(r) \le \sum_{i=1}^q \bar{N}_f(r,a_i) - \log r + O(1),$$
 (*)

and hence

$$\sum_{i=1}^q \delta_f(\mathbf{a}_i) \leq 1,$$

Question: What is the best bound in (*) when we consider a_i to

be small functions?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Our first result is as follows.

Theorem

Let f be a nonconstant meromorphic function on **K**. Let $a_1, \ldots, a_q \ (q \ge 5)$ be q distinct small functions with respect to f. We have

$$\frac{2q}{5}T(r,f) \leq \sum_{i=1}^{q} \overline{N}\left(r,\frac{1}{f-a_i}\right) + S(r,f).$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Denote

$$\overline{E}(a,k,f) = \{z \in \mathbf{K} : f(z) - a = 0 \text{ with multiplicities at most } k.\}$$

A zero of $f - \infty$ means a pole of f.

Denote $\overline{E}(a, \infty, f) = \overline{E}(a, f)$.

We say that f and g share a function a ignoring multiplicities if $\overline{E}(a, f) = \overline{E}(a, g).$

Theorem

Let f and g be two nonconstant meromorphic functions on K. Let a_1, \ldots, a_q $(q \ge 5)$ be q distinct small functions with respect to f and g. Let k_1, \ldots, k_q be q positive integers or $+\infty$ with

$$\sum_{j=1}^q rac{1}{k_j+1} < rac{2q(q-4)}{5(q+4)}.$$

1	f
	1

$$\overline{E}(a_j, k_j, f) = \overline{E}(a_j, k_j, g) \quad (j = 1, \dots, q),$$

then $f \equiv g$.

In the case $k_1 = \cdots = k_q = k$, we can get the result with slightly

smaller multiples as follows.

Theorem

Let f and g be two nonconstant meromorphic functions on K. Let a_1, \ldots, a_q $(q \ge 5)$ be q distinct small functions with respect to f and g. Let k be a positive integer or $+\infty$ with $k > \frac{3(q+4)}{2(q-4)}$. If

$$\overline{E}(a_j,k,f) = \overline{E}(a_j,k,g) \quad (j=1,\ldots,q),$$

then $f \equiv g$.

Corollary

Let f and g be two nonconstant meromorphic functions on K. Let a_1, \ldots, a_5 be 5 distinct small functions with respect to f and g. If f and g share a_j ignoring multiplicities $(j = 1, \ldots, 5,)$ then $f \equiv g$.

Sketch of proof We first consider the following lemma.

Lemma

Let f be a nonconstant meromorphic function on K. Let a_1, \ldots, a_5 be distinct small functions with respect to f. We have

$$2T(r,f) \leq \sum_{i=1}^{5} \overline{N}\left(r,\frac{1}{f-a_{i}}\right) + S(r,f).$$

- By the Lemma, for every subset $\{i_1,\ldots,i_5\}$ of $\{1,\ldots,q\}$ such

that $1 \leq i_1 < \cdots < i_5 \leq q,$ we have

$$2T(r,f) \leq \sum_{s=1}^{5} \overline{N}\left(r, \frac{1}{f-a_{i_s}}\right) + S(r,f).$$

$$(1)$$

- The number of such inequalities is C_q^5 . Taking summing up over

all subsets $\{i_1, \ldots, i_5\}$ of $\{1, \ldots, q\}$:

$$\begin{aligned} 2\mathrm{C}_{q}^{5}T(r,f) &\leq \sum_{\substack{\{i_{1},\ldots,i_{5}\}\subset\{1,\ldots,q\}\\1\leq i_{1}<\cdots< i_{5}\leq q}} \left(\overline{N}\left(r,\frac{1}{f-a_{i_{1}}}\right)+\overline{N}\left(r,\frac{1}{f-a_{i_{2}}}\right)\right.\\ &+\overline{N}\left(r,\frac{1}{f-a_{i_{3}}}\right)+\overline{N}\left(r,\frac{1}{f-a_{i_{4}}}\right)+\overline{N}\left(r,\frac{1}{f-a_{i_{5}}}\right)\right)+S(r,f) \end{aligned}$$

for each index i_k , the number of terms $\overline{N}\left(r, \frac{1}{f-a_{i_k}}\right)$ is C_{q-1}^4 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hence,

$$2\mathrm{C}_q^5 T(r,f) \leq \mathrm{C}_{q-1}^4 \sum_{i=1}^q \overline{N}(r,\frac{1}{f-a_i}) + S(r,f).$$

It follows that

$$\frac{2q}{5}T(r,f) \leq \sum_{i=1}^{q} \overline{N}(r,\frac{1}{f-a_i}) + S(r,f).$$

 Khoai and Tu, Internat. J. Math, 1995: H₁,..., H_q are hyperplanes in general position, f : K → Pⁿ(K) is non linear

degenerate. Then

$$\sum_{i=1}^q \delta_f(G_i) \le n+1.$$

 Ru, Proc. A.M.S., 2001: G₁,..., G_q are hypersurfaces of Pⁿ(K) in general position, f : K → Pⁿ(K) and Imf ⊄ G_i for any i. Then
 ⁿ

$$\sum_{i=1}^{q} \delta_f(G_i) \leq n.$$

Theorem

X be a projective variety of dimension $n \ge 1$. Let $G_1, ..., G_q$ be hypersurfaces in general position with X. Let $f : \mathbf{K} \to X$ be a non-constant analytic map and Imf $\not\subset G_i$ for any *i*. Then

$$\sum_{i=1}^q \delta_f(G_i) \leq n.$$

Corollary

With the assumptions and notation as in the theorem, there is at most n hypersurfaces G_j such that $\delta_f(G_j) > 0$.

Corollary

Let X be a projective variety of dimension n and G_1, \dots, G_q are hypersurfaces in general position. If $q \ge n+1$ then $f : \mathbf{K} \longrightarrow X \setminus \{\bigcup_{i=1}^{q} G_i\}$ is constant.

The Complex case

Definition

A manifold X over algebraically closed, and complete field F is said to be **hyperbolic** (in the sense of Brody) if every analytic map from F to X is constant.

Conjecture (Kobayashi - Zaidenberg Conjecture)

In the complex field, the complements of "generic" hypersurfaces in \mathbb{P}^n with degree at least 2n + 1 are hyperbolic.

Previous Work

• Green, Proc. A. M. S., 1977:

 $\mathbb{P}^n(\mathbb{C}) \setminus \{ 2n+1 \text{ hyperplanes in general position} \}$ is

 \mathbb{C} -hyperbolic.

Eremenko-Sodin, St. Petersburg M. J., 1992; and Ru, J.
 Reine Angew. Math., 1993]: Pⁿ(C) \ { 2n + 1

hypersurfaces in general position} is \mathbb{C} -hyperbolic.

• Dethloff, Schmacher, and Wong, Amer. J. Math., 1995;

Duke Math. J.,1995: For C_i is generic curves,

 $\mathbb{P}^2(\mathbb{C})\setminus \cup_{i=1}^4 C_i$ is \mathbb{C} -hyperbolic and $\mathbb{P}^2(\mathbb{C})\setminus \cup_{i=1}^3 C_i$ is

C-hyperbolic if deg C > 2 for $i = 1, 2, 3^{\text{bin}(\overline{a}) + (\overline{a}) + (\overline{a$

Non-Archimedian cases

• Ru, Proc. A.M.S., 2001:

 $\mathbb{P}^{n}(\mathbf{K}) \setminus \{ n+1 \text{ hypersurfaces in general position} \}$ is **K**-hyperbolic.

• Proc. A. M. S. 135 (2007):

 $X \setminus \{ \dim X + 1 \text{ hypersurfaces in general position} \}$ is

K-hyperbolic.

Question

Let $D_1,...,D_q$, $q \le n$, be q distinct generic hypersurfaces in $\mathbb{P}^n(\mathbf{K})$. If $\sum_{i=1}^q \deg D_i \ge 2n$, then $\mathbb{P}^n \setminus \bigcup_{i=1}^q D_i$ is **K**-hyperbolic.

Theorem (Wang, Wong and A., J. Number Theory 128 (2008))

Let X be an n-dimensional nonsingular projective variety. Let $D_i = \{P_i = 0\}, 1 \le i \le q$, be hypersufaces in general position. Let $f : \mathbf{K} \longrightarrow X \setminus \bigcup_{i=1}^{q} D_i$. Then

$$codim(Im)f \ge \min\{n+1,q\} - 1.$$

In particularly, if $q \ge 2$ then f is algebraically degenerate, and if $q \ge n+1$ then $X \setminus \bigcup_{i=1}^{q} D_i$ is **K**-hyperbolic.

The following example shows that the theorem is sharp.

Example

Let $X = \mathbb{P}^n$ and $q \leq n$ and $D_1 = \{X_{n-q+1} = 0\}, ..., D_q = \{X_n = 0\}$. Let $f_0, ..., f_{n-q}$ be algebraically independent K-analytic functions. Then $f = (f_0, f_1, ..., f_{n-q}, 1, ..., 1) : \mathbf{K} \longrightarrow \mathbb{P}^n \setminus \bigcup_{i=1}^q D_i$, and $\operatorname{codim}(\operatorname{Im})f = q - 1$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Lemma

Let C be a irreducible projective curve. Then $C \setminus \{ \text{two distinct points} \}$ is **K**-hyperbolic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Results in projective spaces

Definition

Nonsingular hypersurfaces $D_1, ..., D_n$ in $\mathbb{P}^n(\mathbf{K})$ intersect transversally if for every point $x \in \bigcap_{i=1}^n D_i, \bigcap_{i=1}^n \Theta_{D_i,x} = \{x\}$, where $\Theta_{D_i,x}$ is the tangent space to D_i at x.

Theorem

Let $D_1, ..., D_n$ be nonsingular hypersurfaces in $\mathbb{P}^n(\mathbf{K})$ intersecting transversally. Then $\mathbb{P}^n \setminus \bigcup_{i=1}^n D_i$ is **K**-hyperbolic if deg $D_i \ge 2$ for each $1 \le i \le n$.

The assumption on the degree of the hypersurfaces is sharp.

Example

 $D_1 = \{X_0 = 0\}$, and $D_i = \{X_0^2 + a_{i1}X_1^2 + \dots + a_{in}X_n^2 = 0\}$ with $a_{i1} + \dots + a_{in} = 0$ for $2 \le i \le n$ such that every n - 1 by n - 1 submatrix of the matrix $(a_{ij})_{i,j}$, $2 \le i \le n$, $1 \le j \le n$, has rank n - 1. Then these hypersurfaces intersect transversally. Clearly, the analytic map f(z) = (1, z, z, ..., z) does not intersect any of the hypersurfaces D_i , $1 \le i \le n$.

The particular case when n = 2

Definition

Let *D* be a curve of degree $d \ge 3$ in \mathbb{P}^2 . A nonsingular point *x* of *D* is said to be a **maximal inflexion point** if there exits a line intersecting *D* at *x* with multiplicity *d*.

Remark

The curve $X^d - YZ^{d-1} = 0$ has a maximal inflexion point P = (0, 0, 1) if $d \ge 3$. Every smooth cubic has 9 maximal inflexion points counting multiplicities. Since a maximal inflexion point is an inflexion point, the coefficients of the defining equation of the curve need to satisfy an algebraic equation (i.e. its Hessian form cf. [?]). Therefore, it is not difficult to see that a generic curve of degree $d \ge 4$ has no maximal inflexion points.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem

Let D_1 and D_2 be nonsingular projective curves in \mathbb{P}^2 . Assume that D_1 and D_2 intersect transversally and deg $D_1 \leq \deg D_2$. Then $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ is **K**-hyperbolic if and only if either deg D_1 , deg $D_2 \geq 2$ or deg $D_1 = 1$, deg $D_2 \geq 3$ and D_1 does not intersect D_2 at any maximal inflexion point.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

To prove the theorem, we first study some cases that

 $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ fails to be **K**-hyperbolic.

Lemma

$$\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$$
 is not **K**-hyperbolic if

(i) deg
$$D_1 = 1$$
 and deg $D_2 \leq 2$;

(ii) deg D_1 = deg D_2 = 2 and D_1 and D_2 intersect tangentially;

The non-archimedean analogue of the Kobayashi-Zaidenberg

conjecture for the case of \mathbb{P}^2 omitting two generic curves follows directly.

Corollary

Let D_1 and D_2 be distinct generic curves in \mathbb{P}^2 . If deg D_1 + deg $D_2 \ge 4$ then $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ is **K**-hyperbolic.