Non-Archimedean second main theorems and applications

Ta Thi Hoai An
Institute of Mathematics, Hanoi, VietNam

May 20, 2021

Definition

Let $f: \mathbb{C} \rightarrow \mathbb{P}^{N}(\mathbb{C})$ be a non-constant analytic curve, $\tilde{f}=\left(f_{0}, \ldots, f_{N}\right)$ be a reduced representative of f.
Let

$$
\|\tilde{f}(z)\|:=\max \left\{\left|f_{0}(z)\right|, \ldots,\left|f_{N}(z)\right|\right\}
$$

The Nevanlinna characteristic function of f is

$$
T_{f}(r):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|\tilde{f}\left(r e^{i \theta}\right)\right\| d \theta
$$

Definition

The proximity function of a homogeneous polynomial Q of degree d respect to the map f is defined by

$$
m_{f}(r, Q):=\int_{0}^{2 \pi} \log ^{+} \frac{\left\|\tilde{f}\left(r e^{i \theta}\right)\right\|^{d}}{\left|Q(\tilde{f})\left(r e^{i \theta}\right)\right|} \frac{d \theta}{2 \pi}
$$

The counting function is

$$
N_{f}(r, Q)=\int_{0}^{r} \frac{n_{f}(t, Q)-n_{f}(0, Q)}{t} d t+n_{f}(0, Q) \log r
$$

where

$$
n_{f}(r, Q):=\#\{z| | z \mid<r, Q \circ f(z)=0\}, \text { counting multiplicity }
$$

The defect of f with respect to Q by

$$
0 \leq \delta_{f}(Q)=\liminf _{r \rightarrow \infty}\left(1-\frac{N_{f}(r, Q)}{(\operatorname{deg} Q) T_{f}(r)} \leq 1\right.
$$

Question

1. What is the best upper bounded of

$$
\sum_{i=1}^{q} \delta_{f}\left(Q_{i}\right) \leq ?
$$

(This is a problem of the second main theorem)
2. If two nonconstant meromorphic functions which have the same inverse images of elements or sets. Then, will they be equal? (This is a problem of uniqueness)

Question 1: The problem of second main theorem

- (I) $n=1$:
- For complex numbers: The Classical Second Main

Theorem of Nevanlinna: f is a meromorphic function, a_{i} are distinct points in \mathbb{C}. Then

$$
\sum_{i=1}^{q}\left(\delta_{f}\left(a_{i}\right)+\theta_{f}\left(a_{i}\right)\right) \leq 2
$$

where

$$
\theta_{f}(a)=\liminf _{r \rightarrow \infty} \frac{N_{f}(r, a)-\bar{N}_{f}(r, a)}{T_{f}(r)}
$$

- For small functions: f is a meromorphic function, α is called small function with f iff $T_{\alpha}(r)=o\left(T_{f}(r)\right)$
- Steinmetz and Osgood proved: f is a meromorphic function, $\alpha_{i}, i=1, \ldots, q$ are small functions with f, then

$$
\sum_{i=1}^{q} \delta_{f}\left(\alpha_{i}\right) \leq 2
$$

- Yamanoi (Acta Math 2004): f is a meromorphic function, $\alpha_{i}, i=1, \ldots, q$ are small functions with f, then

$$
\sum_{i=1}^{q}\left(\delta_{f}\left(\alpha_{i}\right)+\theta_{f}\left(\alpha_{i}\right)\right) \leq 2
$$

- (II) $n \geq 2$:
- Cartan, Mathematica, 1933: $f: \mathbb{C} \rightarrow \mathbb{P}^{n}$ is a linearly nondegenerate, H_{1}, \ldots, H_{q} are hyperplanes such that any $n+1$ of them is linearly independence. Then

$$
\sum_{i=1}^{q} \delta_{f}\left(H_{i}\right) \leq n+1
$$

- Shiffman, Indiana U. Math. J., 1979: D_{1}, \ldots, D_{q} are hypersurfaces in general position with $\mathbb{P}^{n}, f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}$ is a of finite order and $\operatorname{Im} f \not \subset D_{i}$ for any i. Then

$$
\sum_{i=1}^{q} \delta_{f}\left(D_{i}\right) \leq 2 n
$$

Definition

X is a n-dimensional projective variety. D_{1}, \ldots, D_{q} of X is said to be in general position if

- the codimension of $\cap_{j=1}^{q} D_{j}$ in X is q when $q \leq n$;
- for any $\left\{i_{0}, \ldots, i_{n}\right\} \subset\{1, \ldots, q\}, \cap_{j=0}^{n} D_{i_{j}}=\emptyset$ when $q \geq n+1$.
- Eremenko and Sodin, St. Petersburg Math. J., 1992:
$f: \mathbb{C} \rightarrow \mathbb{P}^{n}$ and $\operatorname{Im} f \not \subset D_{i}$. Then

$$
\sum_{i=1}^{q} \delta_{f}\left(D_{i}\right) \leq 2 n
$$

- Ru, American J. Math., 2004: $f: \mathbb{C} \rightarrow \mathbb{P}^{n}$ is a algebraically nondegenerate. Then

$$
\sum_{i=1}^{q} \delta_{f}\left(D_{i}\right) \leq n+1
$$

Ru's results need condition f is alg. nondegenerate and it is not clear if these results can implies Eremenko-Sodin's results which only need nondegenerate in the hypersufaces.

Conjecture (Griffiths' conjecture)

Assume D_{1}, \ldots, D_{q} are hypersurfaces of degree d, in general position with \mathbb{P}^{n} and $f: \mathbb{C} \rightarrow \mathbb{P}^{n}$ is a algebraically nondegenerate holomorphic map. Then

$$
\sum_{i=1}^{q} \delta_{f}\left(D_{i}\right) \leq(n+1) / d
$$

(Infact Griffiths asked if the above inequality holds for any map which is algebraically nondegenerate in hypersuface of degree d. There is a conterexample in the case of $\mathbb{P}^{2}, D_{1}, D_{2}, D_{3}$ are the conics, normal crossing, then there exits a map f which is not degenerate of degree 2, but degenerate of degree 3 and $\sum_{i=1}^{3} \delta_{f}\left(D_{i}\right) \leq(n+1) / d(=7 / 2)$ say that it is not true $)$.

Non-Archimedian case

- K: an algebraically closed field of arbitrary characteristic, complete with respect to a non-Archimedean absolute value | |.
- Let h is an entire function on \mathbf{K}, then for each real number $r \geq 0$,

$$
h(z)=\sum_{j=0}^{\infty} a_{m} z^{m}
$$

we define

$$
\begin{aligned}
|h|_{r}: & =\sup _{j}\left|a_{j}\right| r^{j}=\sup \{|h(z)|: z \in \mathbf{K} \text { with }|z| \leq r\} \\
& =\sup \{|h(z)|: z \in \mathbf{K} \text { with }|z|=r\}
\end{aligned}
$$

- Let $f: \mathbf{K} \rightarrow \mathbb{P}^{n}(\mathbf{K})$ be a non-constant analytic curve in projective space with $\tilde{f}=\left(f_{0}, \ldots, f_{n}\right)$ be a reduced representative.

$$
\begin{gathered}
\|f\|_{r}:=\max \left\{\left|f_{0}\right|_{r}, \ldots,\left|f_{n}\right|_{r}\right\}, \\
T_{f}(r):=\log \|f\|_{r}, \\
m_{f}(r, Q):=\log ^{+} \frac{\|f\|_{r}^{d}}{|Q \circ f|_{r}}
\end{gathered}
$$

$n=1 f$ is a Non-Archimedian meromorphic function, and
$a_{i} \in \mathbf{K}, i=1, \ldots, q$. Then

$$
\begin{gather*}
(q-1) T_{f}(r) \leq \sum_{i=1}^{q} N_{f}\left(r, a_{i}\right)+O(1) \tag{*}\\
(q-2) T_{f}(r) \leq \sum_{i=1}^{q} \bar{N}_{f}\left(r, a_{i}\right)-\log r+O(1) \tag{*}
\end{gather*}
$$

and hence

$$
\sum_{i=1}^{q} \delta_{f}\left(a_{i}\right) \leq 1
$$

Question: What is the best bound in (*) when we consider a_{i} to be small functions?

Our first result is as follows.

Theorem

Let f be a nonconstant meromorphic function on K. Let $a_{1}, \ldots, a_{q}(q \geq 5)$ be q distinct small functions with respect to f. We have

$$
\frac{2 q}{5} T(r, f) \leq \sum_{i=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f)
$$

Denote
$\bar{E}(a, k, f)=\{z \in \mathbf{K}: \quad f(z)-a=0$ with multiplicities at most k.

A zero of $f-\infty$ means a pole of f.
Denote $\bar{E}(a, \infty, f)=\bar{E}(a, f)$.
We say that f and g share a function a ignoring multiplicities if
$\bar{E}(a, f)=\bar{E}(a, g)$.

Theorem

Let f and g be two nonconstant meromorphic functions on \mathbf{K}. Let $a_{1}, \ldots, a_{q} \quad(q \geq 5)$ be q distinct small functions with respect to f and g. Let k_{1}, \ldots, k_{q} be q positive integers or $+\infty$ with

$$
\sum_{j=1}^{q} \frac{1}{k_{j}+1}<\frac{2 q(q-4)}{5(q+4)} .
$$

If

$$
\bar{E}\left(a_{j}, k_{j}, f\right)=\bar{E}\left(a_{j}, k_{j}, g\right) \quad(j=1, \ldots, q)
$$

then $f \equiv g$.

In the case $k_{1}=\cdots=k_{q}=k$, we can get the result with slightly smaller multiples as follows.

Theorem

Let f and g be two nonconstant meromorphic functions on K. Let $a_{1}, \ldots, a_{q} \quad(q \geq 5)$ be q distinct small functions with respect to f and g. Let k be a positive integer or $+\infty$ with $k>\frac{3(q+4)}{2(q-4)}$. If

$$
\bar{E}\left(a_{j}, k, f\right)=\bar{E}\left(a_{j}, k, g\right) \quad(j=1, \ldots, q),
$$

then $f \equiv g$.

Corollary

Let f and g be two nonconstant meromorphic functions on K. Let a_{1}, \ldots, a_{5} be 5 distinct small functions with respect to f and g. If f and g share a_{j} ignoring multiplicities $(j=1, \ldots, 5$,$) then f \equiv g$.

Sketch of proof We first consider the following lemma.

Lemma

Let f be a nonconstant meromorphic function on K. Let a_{1}, \ldots, a_{5} be distinct small functions with respect to f. We have

$$
2 T(r, f) \leq \sum_{i=1}^{5} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f)
$$

- By the Lemma, for every subset $\left\{i_{1}, \ldots, i_{5}\right\}$ of $\{1, \ldots, q\}$ such that $1 \leq i_{1}<\cdots<i_{5} \leq q$, we have

$$
\begin{equation*}
2 T(r, f) \leq \sum_{s=1}^{5} \bar{N}\left(r, \frac{1}{f-a_{i_{s}}}\right)+S(r, f) \tag{1}
\end{equation*}
$$

- The number of such inequalities is C_{q}^{5}. Taking summing up over all subsets $\left\{i_{1}, \ldots, i_{5}\right\}$ of $\{1, \ldots, q\}$:

$$
\begin{aligned}
2 \mathrm{C}_{q}^{5} T(r, f) \leq & \sum_{\substack{\left\{i_{1}, \ldots, i_{i}\right\} \subset\{1, \ldots, q\} \\
1 \leq i_{1}<\cdots<i_{5} \leq q}}\left(\bar{N}\left(r, \frac{1}{f-a_{i_{1}}}\right)+\bar{N}\left(r, \frac{1}{f-a_{i_{2}}}\right)\right. \\
& \left.+\bar{N}\left(r, \frac{1}{f-a_{i_{3}}}\right)+\bar{N}\left(r, \frac{1}{f-a_{i_{4}}}\right)+\bar{N}\left(r, \frac{1}{f-a_{i_{5}}}\right)\right)+S(r, f
\end{aligned}
$$

for each index i_{k}, the number of terms $\bar{N}\left(r, \frac{1}{f-a_{i k}}\right)$ is C_{q-1}^{4}.

Hence,

$$
2 \mathrm{C}_{q}^{5} T(r, f) \leq \mathrm{C}_{q-1}^{4} \sum_{i=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f)
$$

It follows that

$$
\frac{2 q}{5} T(r, f) \leq \sum_{i=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f) .
$$

- Khoai and Tu, Internat. J. Math, 1995: H_{1}, \ldots, H_{q} are hyperplanes in general position, $f: \mathbf{K} \rightarrow \mathbb{P}^{n}(\mathbf{K})$ is non linear degenerate. Then

$$
\sum_{i=1}^{q} \delta_{f}\left(G_{i}\right) \leq n+1
$$

- Ru, Proc. A.M.S., 2001: G_{1}, \ldots, G_{q} are hypersurfaces of $\mathbb{P}^{n}(\mathbf{K})$ in general position, $f: \mathbf{K} \rightarrow \mathbb{P}^{n}(\mathbf{K})$ and $\operatorname{Im} f \not \subset G_{i}$ for any i. Then

$$
\sum_{i=1}^{q} \delta_{f}\left(G_{i}\right) \leq n
$$

Theorem

X be a projective variety of dimension $n \geq 1$. Let $G_{1}, . ., G_{q}$ be hypersurfaces in general position with X. Let $f: \mathbf{K} \rightarrow X$ be a non-constant analytic map and Imf $\not \subset G_{i}$ for any i. Then

$$
\sum_{i=1}^{q} \delta_{f}\left(G_{i}\right) \leq n
$$

Corollary

With the assumptions and notation as in the theorem, there is at most n hypersurfaces G_{j} such that $\delta_{f}\left(G_{j}\right)>0$.

Corollary

Let X be a projective variety of dimension n and G_{1}, \cdots, G_{q} are hypersurfaces in general position. If $q \geq n+1$ then $f: \mathbf{K} \longrightarrow X \backslash\left\{\cup_{i=1}^{q} G_{i}\right\}$ is constant.

The Complex case

Definition

A manifold X over algebraically closed, and complete field F is said to be hyperbolic (in the sense of Brody) if every analytic map from F to X is constant.

Conjecture (Kobayashi - Zaidenberg Conjecture)

In the complex field, the complements of "generic" hypersurfaces in \mathbb{P}^{n} with degree at least $2 n+1$ are hyperbolic.

Previous Work

- Green, Proc. A. M. S., 1977:
$\mathbb{P}^{n}(\mathbb{C}) \backslash\{2 n+1$ hyperplanes in general position $\}$ is
\mathbb{C}-hyperbolic.
- Eremenko-Sodin, St. Petersburg M. J., 1992; and Ru, J. Reine Angew. Math., 1993]: $\mathbb{P}^{n}(\mathbb{C}) \backslash\{2 n+1$ hypersurfaces in general position\} is \mathbb{C}-hyperbolic.
- Dethloff, Schmacher, and Wong, Amer. J. Math., 1995;

Duke Math. J.,1995: For C_{i} is generic curves, $\mathbb{P}^{2}(\mathbb{C}) \backslash \cup_{i=1}^{4} C_{i}$ is \mathbb{C}-hyperbolic and $\mathbb{P}^{2}(\mathbb{C}) \backslash \cup_{i=1}^{3} C_{i}$ is \mathbb{C}-hynerbolic if deo $C: \geq 2$ for $i=123$

Non-Archimedian cases

- Ru, Proc. A.M.S., 2001:
$\mathbb{P}^{n}(\mathbf{K}) \backslash\{n+1$ hypersurfaces in general position $\}$ is K-hyperbolic.
- Proc. A. M. S. 135 (2007):
$X \backslash\{\operatorname{dim} X+1$ hypersurfaces in general position $\}$ is K-hyperbolic.

Question

Let $D_{1}, \ldots, D_{q}, q \leq n$, be q distinct generic hypersurfaces in $\mathbb{P}^{n}(\mathbf{K})$. If $\sum_{i=1}^{q} \operatorname{deg} D_{i} \geq 2 n$, then $\mathbb{P}^{n} \backslash \cup_{i=1}^{q} D_{i}$ is K-hyperbolic.

Theorem (Wang, Wong and A., J. Number Theory 128 (2008))

Let X be an n-dimensional nonsingular projective variety. Let $D_{i}=\left\{P_{i}=0\right\}, 1 \leq i \leq q$, be hypersufaces in general position. Let $f: \mathbf{K} \longrightarrow X \backslash \cup_{i=1}^{q} D_{i}$. Then

$$
\operatorname{codim}(\operatorname{lm}) f \geq \min \{n+1, q\}-1
$$

In particularly, if $q \geq 2$ then f is algebraically degenerate, and if $q \geq n+1$ then $X \backslash \cup_{i=1}^{q} D_{i}$ is \mathbf{K}-hyperbolic.

The following example shows that the theorem is sharp.

Example

Let $X=\mathbb{P}^{n}$ and $q \leq n$ and
$D_{1}=\left\{X_{n-q+1}=0\right\}, \ldots, D_{q}=\left\{X_{n}=0\right\}$. Let f_{0}, \ldots, f_{n-q} be algebraically independent K-analytic functions. Then $f=\left(f_{0}, f_{1}, \ldots, f_{n-q}, 1, \ldots, 1\right): \mathbf{K} \longrightarrow \mathbb{P}^{n} \backslash \cup_{i=1}^{q} D_{i}$, and $\operatorname{codim}(\operatorname{lm}) f=q-1$.

Lemma

Let C be a irreducible projective curve. Then $C \backslash\{$ two distinct points $\}$ is \mathbf{K}-hyperbolic.

Results in projective spaces

Definition

Nonsingular hypersurfaces D_{1}, \ldots, D_{n} in $\mathbb{P}^{n}(\mathbf{K})$ intersect transversally if for every point $x \in \cap_{i=1}^{n} D_{i}, \cap_{i=1}^{n} \Theta_{D_{i}, x}=\{x\}$, where $\Theta_{D_{i}, x}$ is the tangent space to D_{i} at x.

Theorem

Let D_{1}, \ldots, D_{n} be nonsingular hypersurfaces in $\mathbb{P}^{n}(\mathbf{K})$ intersecting transversally. Then $\mathbb{P}^{n} \backslash \cup_{i=1}^{n} D_{i}$ is K-hyperbolic if $\operatorname{deg} D_{i} \geq 2$ for each $1 \leq i \leq n$.

The assumption on the degree of the hypersurfaces is sharp.

Example

$D_{1}=\left\{X_{0}=0\right\}$, and $D_{i}=\left\{X_{0}^{2}+a_{i 1} X_{1}^{2}+\cdots+a_{i n} X_{n}^{2}=0\right\}$ with $a_{i 1}+\cdots+a_{i n}=0$ for $2 \leq i \leq n$ such that every $n-1$ by $n-1$ submatrix of the matrix $\left(a_{i j}\right)_{i, j}, 2 \leq i \leq n, 1 \leq j \leq n$, has rank $n-1$. Then these hypersurfaces intersect transversally. Clearly, the analytic map $f(z)=(1, z, z, \ldots, z)$ does not intersect any of the hypersurfaces $D_{i}, 1 \leq i \leq n$.

The particular case when $n=2$

Definition

Let D be a curve of degree $d \geq 3$ in \mathbb{P}^{2}. A nonsingular point x of D is said to be a maximal inflexion point if there exits a line intersecting D at x with multiplicity d.

Remark

The curve $X^{d}-Y Z^{d-1}=0$ has a maximal inflexion point $P=(0,0,1)$ if $d \geq 3$. Every smooth cubic has 9 maximal inflexion points counting multiplicities. Since a maximal inflexion point is an inflexion point, the coefficients of the defining equation of the curve need to satisfy an algebraic equation (i.e. its Hessian form cf. [?]). Therefore, it is not difficult to see that a generic curve of degree $d \geq 4$ has no maximal inflexion points.

Theorem

Let D_{1} and D_{2} be nonsingular projective curves in \mathbb{P}^{2}. Assume that D_{1} and D_{2} intersect transversally and $\operatorname{deg} D_{1} \leq \operatorname{deg} D_{2}$. Then $\mathbb{P}^{2} \backslash\left\{D_{1} \cup D_{2}\right\}$ is \mathbf{K}-hyperbolic if and only if either $\operatorname{deg} D_{1}$, deg $D_{2} \geq 2$ or $\operatorname{deg} D_{1}=1$, deg $D_{2} \geq 3$ and D_{1} does not intersect D_{2} at any maximal inflexion point.

To prove the theorem, we first study some cases that $\mathbb{P}^{2} \backslash\left\{D_{1} \cup D_{2}\right\}$ fails to be K-hyperbolic.

Lemma

$\mathbb{P}^{2} \backslash\left\{D_{1} \cup D_{2}\right\}$ is not \mathbf{K}-hyperbolic if
(i) $\operatorname{deg} D_{1}=1$ and $\operatorname{deg} D_{2} \leq 2$;
(ii) $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=2$ and D_{1} and D_{2} intersect tangentially;
(ii) $\operatorname{deg} D_{1}=1, \operatorname{deg} D_{1} \geq 3$ and D_{1} does intersect D_{2} at a maximal inflexion point of D_{2}.

The non-archimedean analogue of the Kobayashi-Zaidenberg conjecture for the case of \mathbb{P}^{2} omitting two generic curves follows directly.

Corollary
Let D_{1} and D_{2} be distinct generic curves in \mathbb{P}^{2}. If $\operatorname{deg} D_{1}+\operatorname{deg} D_{2} \geq 4$ then $\mathbb{P}^{2} \backslash\left\{D_{1} \cup D_{2}\right\}$ is \mathbf{K}-hyperbolic.

